

LETTERS TO THE EDITOR

NOVEL THIACROWN ETHERS INCORPORATING THIOACETAL GROUPS

V. V. Samoshin, K. V. Kudryavtsev, and N. S. Zefirov

Thiacrown ethers are of considerable interest as selective complexing agents for heavy metal ions [1, 2]. However some of their structural types, particularly thioacetals, are represented by single examples [1-5]. Their conformational properties [4, 5] and the possibility of introducing highly lipophilic substituents into the S-C-S unit [5] are interesting. In this paper we report the syntheses of new lipophilic thiacrown ethers of this type starting from cyclic ketones (cyclohexanone, adamantanone) and dithiols prepared from the corresponding oligoethylene glycols.

Cyclization of equimolar amounts of the reagents was carried out by dehydration on boiling in benzene in the presence of TsOH (method A) or with a new reagent, cesium hydrogen sulfate, which was prepared by reaction of a 1:2 molar ratio of cesium carbonate and sulfuric acid (method B). Use of CsHSO₄, which is both an acid catalyst and a template reagent, thanks to the presence of the large cesium ion, increased the yield of thiacrown ether I and permitted the preparation of compound III which could not be isolated when TsOH was used. Compounds I and II were separated by column chromatography (silica gel, eluents chloroform and 1:1 chloroform-ethanol) while compound III was purified by crystallization from benzene.

Thiacrown Ether (I, C₂₀H₃₆O₂S₄). Viscous oil; yield 40% (A) and 80% (B). ¹H NMR Spectrum (250 MHz, CDCl₃): 1.43 (4H, m, CH₂), 1.62 (8H, m, CH₂), 1.82 (8H, m, CH₂), 2.79 (8H, t, J = 7 Hz, CH₂S), 3.60 (8H, t, J = 7 Hz, CH₂O). Mass spectrum, m/z (relative intensity, %): 436 (1, M⁺), 219 (22), 185 (1), 159 (12), 141 (100), 114 (60), 81 (65), 61 (75).

Thiacrown Ether (II, C₂₄H₄₄O₄S₄). Viscous oil, yield 48% (A). ¹H NMR Spectrum (250 MHz, CDCl₃): 1.41 (4H, m, CH₂), 1.60 (8H, m, CH₂), 1.79 (8H, m, CH₂), 2.78 (8H, t, J = 7 Hz, CH₂S), 3.60 (16H, m, CH₂O). Mass spectrum, m/z (relative intensity, %): 442 (3), 360 (63), 301 (15), 212 (22), 180 (32), 124 (43), 103 (54), 45 (100).

M. V. Lomonosov Moscow State Academy for Fine Chemical Technology, Moscow 117571. M. V. Lomonosov Moscow State University, Moscow 119899. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 1, pp. 133-134, January, 1995. Original article submitted October 17, 1994.

Thiacrown Ether (III, $C_{28}H_{44}O_2S_4$). Yield 50% (B). M.p. 224°C. 1H NMR Spectrum (360 MHz, $CDCl_3$): 1.62 (8H, m, CH_2), 1.70 (4H, br.s, CH), 1.89 (8H, m, CH_2), 2.52 (8H, m, CH, CH_2), 2.84 (8H, t, $J = 6.5$ Hz, CH_2S), 3.71 (8H, t, $J = 6.5$ Hz, CH_2O). Mass spectrum m/z (relative intensity, %): 540 (3), 404 (2), 270 (22), 238 (13), 202 (5), 166 (100).

The authors thank the "Fine Organic Synthesis" NTP Russian Federation State Committee on Graduate Education for supporting this work.

REFERENCES

1. M. G. Voronkov and V. I. Knutov, *Sulfur Reports*, **6**, 137 (1986).
2. S. R. Cooper, *Acc. Chem. Res.*, **21**, 141 (1988)
3. R. A. Bartsch, B. P. Czech, Z. Huang, B. Strzelbicka and R. A. Holwerda, *J. Coord. Chem.*, **18**, 105 (1988).
4. B. DeGroot and S. J. Loeb, *Inorg. Chem.*, **30**, 3103 (1991).
5. J. J. H. Edema, M. Hoogenraad, R. M. Kellogg, H. Kooijman and A. L. Spek, *J. Org. Chem.*, **58**, 5282 (1993).